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Element partitioning depends strongly on composition and structure of the involved phases. In this study, we
use molecular dynamics simulations to investigate the local environment of Y as an exemplary trace element
in four silicate melts with different compositions and thus varying degrees of polymerization. Based on these
structural results, we propose a mechanism which explains the observed partitioning trends of Y and other
rare-earth elements between crystals and melts or between two melts. With our computational approach,
we found a systematic correlation between melt composition and Y coordination as well as Y―O bond
lengths, a result which was corroborated by EXAFS spectroscopy on glasses with the same compositions as
the simulated melts. Our simulations revealed, moreover, the affinity of Y for network modifiers as
second-nearest neighbors (Ca in this study) and the tendency to avoid network formers (Si and Al). This is
consistent with the observation that Y (and other rare-earth elements) in general prefer depolymerized to
polymerized melts in partitioning experiments (see, e.g., Schmidt et al. (2006)). Furthermore, we used the
method of thermodynamic integration to calculate the Gibbs free energy which governs Y partitioning be-
tween two exemplary melts. These more quantitative results, too, are in line with the observed partitioning
trends.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

In the presence of two or more coexisting phases in thermodynamic
equilibrium, a minor or trace element will, in general, not be distributed
equally among these phases, but will be incorporated preferentially into
some chemical environments at the expense of others. The resulting dis-
tribution of an element i between two phases α and β is quantified by the
Nernst partition coefficient Di

α/β=ci
α/ciβ, with ci

α denoting the concentra-
tion (mass fraction) of element i in phase α. The molar partition coeffi-
cient Di∗

α/β=xi
α/xiβ is defined in terms of mole fractions x instead of

concentrations and can easily be converted to Di
α/β (see Beattie et al.

(1993), for terminology). The partition coefficient of element i depends,
in general, on temperature, pressure, chemical composition and structure
of the involved phases. Conversely, if this dependence is known, either
from a compilation of experimental data or from a suitable theory, then
the distribution of trace elements in, e.g., rock samples can provide infor-
mation about the petrogenetic history, and hence constitute a valuable
tool for petrologists and geochemists (e.g. Shaw (2006)).

Trace element partitioning between coexisting crystal and melt
phases can be understood, at least partially, in terms of the local environ-
ment of the incorporated cation in the crystal: if the trace element fits
x: +49 331 288 1402.
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available crystal sites well by size and charge, then it is enriched in the
crystal, otherwise it partitions into the melt. It has long been known
that crystal-melt partition coefficients of a series of isovalent cations, plot-
ted logarithmically as a function of ionic radius, form near-parabolic pat-
terns which peak at an ideal radius (Onuma et al., 1968). These patterns
have been described quantitatively by Blundy and Wood (1994) by
means of the lattice strainmodel, based onwork by Brice (1975). It trans-
lates the strain in the crystal lattice, induced by themismatch of the incor-
porated cation, to a free energy penalty for cation incorporation, which in
turn governs the partitioning.

The lattice strain model, when suitably parameterized, successfully
describes observed crystal-melt partitioning behavior in terms of crystal
chemistry alone, without explicitly taking into account melt properties.
If the latter are important, their influence on partitioning is hidden in
the adjustable model parameters and cannot be predicted nor explained
by the original model (although Wood and Blundy (1997) extended the
model by taking into account the Mg/(Mg+Fe) ratio in the melt). How-
ever, there is broad evidence that melt composition can indeed have a
strong effect on trace element partitioning. Prowatke and Klemme
(2005), in a series of experiments, measured partition coefficients of sev-
eral trace elements between titanite (CaTiSiO5) and a range of coexisting
silicate melts of different compositions. Although the crystal chemistry
was virtually constant in all experiments, partition coefficients varied by
two orders of magnitude for several rare-earth elements (REE) and
Th. Moreover, the partition coefficients were found to depend
lations of Y in silicate melts and implications for trace element
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systematically on melt polymerization, quantified by the molar ratio
of Al2O3/(Na2O+K2O+CaO). In particular, all the REE probed in the
study showed an increasing tendency to partition into the melt the
more the melt was depolymerized.

More evidence for the influence of melt composition (and thus melt
structure) on element partitioning comes from experiments with immis-
cible silicatemelts (Watson, 1976; Ryerson andHess, 1978; Schmidt et al.,
2006). In the latter study, partition coefficients between coexisting gab-
broic (highly depolymerized) and granitic (highly polymerized) melts
were determined for a large set of elements. A strong preference of the
REE for the depolymerized melt was found, with DREE

gabbro/granite≃10.
According to the authors’ interpretation, the abundance of non-bridging
oxygen in the depolymerized melt facilitates the formation of the pre-
ferred (i.e. energetically favorable) coordination polyhedra of REE and
thus favors the observed distribution. In a similar study, Veksler et al.
(2006) found the same partitioning trend between immiscible pairs of
Fe-rich and Si-richmelt.Mysen (2004) suggested to understand the influ-
ence of melt composition on element partitioning in terms of Qn

(0≤n≤4) species whose abundance and proportions vary with bulk
composition, thus offering varying amounts of energetically favorable
“sites” for trace element incorporation.

It is the aim of this computational study to elucidate the mechanisms
by which melt composition influences the distribution of trace elements
between crystal andmelt or between twomelts.We chose Y as an exem-
plary REE whose partition behavior was shown to depend strongly on
melt properties (Prowatke and Klemme, 2005; Schmidt et al., 2006).
From a computational point of view, Y is a more convenient element
than the (chemically similar) lanthanides whose strongly correlated 4f
electrons pose notorious problems for theoretical descriptions. Our ap-
proach is based onmolecular dynamics, a methodwhich provides simul-
taneous access to the atomic structure and dynamics and to the
thermodynamic variables of a system. Taking four differentmodel silicate
melts, wefirst investigated howmelt composition influences the local co-
ordination environment of Y ions in the melt. We then translated these
structural changes to differences in free energy, which in turn determine
the partitioning behavior of Y.

2. Methods

2.1. Interaction potential

We performed molecular dynamics (MD) simulations to investigate
structural and thermodynamic properties of silicatemelts. Given the con-
siderable systemsizes and simulation times required for our study,wedid
not perform first-principles MD but used a polarizable ionic interaction
potential (see Wilson and Madden (1993) for a general discussion)
which has been parameterized from first principles (i.e. from fundamen-
tal laws of nature,without reference to experimental data), taking density
functional theory (DFT, (Hohenberg and Kohn, 1964; Kohn and Sham,
1965)) as a reference. The polarizable ion model is of the form

V rf gð Þ ¼ Vqq þ V rep þ Vdisp þ Vpol ð1Þ

where {r} represents the set of ionic positions. The first term on the
right side describes charge–charge interactions between pairs of ions
at ri and rj, with distance rij=|ri−rj| and nominal charges qi and qj
(qO=−2, qSi=4, qCa=2, qAl=qY=3):

Vqq ¼ ∑
ibj

qiqj
rij

ð2Þ

The second term represents the repulsion between two ions due
to the overlap of electron densities at short distances:

V rep ¼ ∑
ibj

Aijexp −aijrij
� �

ð3Þ
Please cite this article as: Haigis, V., et al., Molecular dynamics simu
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The Aij and aij are adjustable model parameters. With the third
term, we model dispersion interactions:

Vdisp ¼ −∑
ibj

f ij6 rij
� �Cij

6

r6ij
ð4Þ

Here, the C6
ij are calculated from condensed-phase ionic polariz-

abilities (see below) and the f6
ij represent Tang–Toennies dispersion

damping functions which describe deviations from the asymptotic
C6
ij/rij6 behavior at short distances (Tang and Toennies, 1984) and are

defined as

f ij6ðrijÞ ¼ 1−exp −bij6rij
� �X4

k¼0

bij6rij
� �k

k!
ð5Þ

with adjustable parameters b6
ij. The last term in Eq. (1) takes into ac-

count the polarizability α of the ions and comprises Coulombic
charge–dipole and dipole–dipole interactions as well as a self-energy
term which describes the energy cost to polarize an ion:

Vpol ¼ ∑
ibj;α

qiμ
α
j f

ij
DðrijÞ−qjμ

α
i f

ji
DðrjiÞ

h i
T 1ð Þ
α

− ∑
ibj;α;β

μα
i μ

β
j T

2ð Þ
αβ þ∑

i

μ i

�� ��2
2αi

ð6Þ

By μiα, we denote the Cartesian components of ionic dipole
moments, and their interaction with ionic charges qi is damped at
short distances by means of Tang–Toennies dipole damping functions
fD
ij(rij). These have the same form as in Eq. (5), but now contain the
adjustable parameters bD

ij instead of b6
ij. Finally, we write Tαβ…

(n) =
∇α∇β⋯1/rij for the multipole interaction tensors, with the superscript
denoting the order of the derivative (Stone, 1996).

We emphasize that the polarization term Vpol goes beyond a simple
pairwise interaction and introduces real many-body effects. This is
because at eachMD step, i.e. for given ionic positions {r}, all ionic dipole
moments are determined self-consistently byminimizingVpol as a func-
tion of the dipole moments (Wilson and Madden, 1993), using a
conjugate-gradient algorithm. The polarization term turned out to be
crucial for a transferable interaction potential for oxides (Rowley et
al., 1998). In fact, polarizability mimics a deformable electron density,
which is an indispensable ingredient of formally ionic models if they
are to describe oxides (or silicates) correctly.

The interaction potential, Eqs. (1) to (6), was parameterized by
matching dipoles, forces, and stresses derived from the potential to
dipoles, forces, and stresses obtained fromDFT, following the procedure
presented in Aguado et al. (2003) and Jahn and Madden (2007). As
reference configurations, we chose four melt configurations with com-
positions SiO2, Al2O3, CaO, and Y2O3, generated by Born-Oppenheimer
MD with at least 80 atoms in the simulation cell. The equilibration
runs and the static DFT calculations on the four reference configurations
were carried out with the CPMD code (Car and Parrinello, 1985; Marx
and Hutter, 2000) within the local density approximation, using
Troullier–Martins pseudopotentials (Troullier and Martins, 1991). We
found that a plane-wave cutoff of at least 180 Ry (240 Ry for CaO) and
a Brillouin zone sampling restricted to Γ produced converged forces,
dipoles and stress tensors. The ionic dipoles were calculated from the
configuration of maximally localized Wannier functions (Marzari and
Vanderbilt, 1997) around ion cores. The model parameters were deter-
mined by a least-square fit in a two-step procedure. First, the
condensed-phase ionic polarizabilities αi and all the dipole damping
parameters bD

ij were optimized. We treated only O2−, Ca2+, and Y3+

as polarizable, and neglected the polarizability of the small cations
Si4+ and Al3+. Second, keeping these values fixed, the remaining
parameters were fitted to DFT forces and stresses. The values of all
model parameters are listed in Table 1.
lations of Y in silicate melts and implications for trace element
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Fig. 1. Radial distribution functions for cation-oxygen pairs in Ca3(Al,Y)2(SiO4)3 melt
(grossular composition), at 3000 K and a density of 2.62 g/cm3. Full lines represent
data obtained with the polarizable ion model and symbols are DFT results. The simula-
tion with the polarizable ion model was done with a simulation cell containing one Y
atom and 1280 atoms in total. For the DFT-based MD, the simulation cell contained
one Y atom and 160 atoms in total, and Born-Oppenheimer MD was performed in
the local density approximation, with a plane-wave cut-off of 80 Rydberg.
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To test the accuracy of the new interaction potential, we applied it to
Ca3(Al,Y)2(SiO4)3melt, with oneY atom in the simulation cell, and com-
pared the results to the outcome of a DFT MD run for this system. Since
thismeltwas not among the reference systemsused for thefit, we here-
by also checkedwhether the potential is transferable to different chem-
ical compositions. The radial distribution functions for all the cation-
oxygen pairs, plotted in Fig. 1, are in excellent agreement with DFT.
Melt density constitutes another test of the interaction potential. In an
MD simulation at 3000 K and ambient pressure, the density was found
to be 2.62 g/cm3. Unfortunately, no experimental data are available at
these conditions, so we resort to the expression given by Lange and
Carmichael (1987) for the density of multicomponent silicate melts,
which is based on a large experimental data set. At 3000 K, Ca3Al2(SiO4)3
melt is predicted to have a density of 2.45 g/cm3, 6% lower than our sim-
ulation result. This overestimation of density by our interaction potential
can be explained by the fact that it has been parameterized with respect
to the local density approximation to DFT, which is known to underesti-
mate lattice constants by about 1%–2%, i.e. to overestimate densities by
3%–6%. On the other hand, Lange and Carmichael (1987) caution against
using their density formula at temperatures far above 1873 K and indi-
cate that it might underestimate the density of Al-bearing silicate melts
at higher temperatures by several percent, so that the difference to our
simulated density would be even smaller. In conclusion, the interaction
potential has been shown to reproduce DFT-derived melt structures
well and topredictmelt densities consistentwith extrapolations of exper-
imental data.

We close this part of the paper by commenting on the dispersion
interaction, the contribution of which to the total potential energy
of our model is small, but not negligible. There is no obvious way of
obtaining the coefficients C6

ij from DFT calculations, since dispersion
is not well described by the available approximate exchange-
correlation functionals. However, the coefficients are related to the
polarizabilities via the Casimir-Polder integral (Casimir and Polder,
1948) or, in an approximate way, via the Slater-Kirkwood expression
(Slater and Kirkwood, 1931)

Cij
6 ¼ 3

2
αiαjffiffiffiffiffiffiffiffiffiffiffiffi

αi=Ni

p þ
ffiffiffiffiffiffiffiffiffiffiffiffi
αj=Nj

q ð7Þ

where Ni is a parameter which can be calculated from like-ions inter-
actions and Eq. (7) as

Ni ¼
4
3

Cii
6

α3=2
i

" #2

ð8Þ

if C6ii and αi are known. Ni can then be used in the “combination rule”
for unlike ions, Eq. (7). Unfortunately, we don't know the value of
C6
O2−−O2−

etc. in condensed phases. However, Koutselos and Mason
(1986) found empirically that N is nearly constant for ions of an iso-
electronic sequence, i.e. NO2−≃NNe, etc. Thus we chose the following
procedure to determine the coefficients C6

ij: First we calculated NNe,
NAr, and NKr from Eq. (8), with gas phase α's and like-ions C6s
Table 1
Interaction parameters, see Eqs. (1) to (6), in atomic units. Interactions not listed or left bla
bD
ij≠bD

ji in general, both parameters are listed.

i–j O―O Si―O Al―O Ca―O

qi −2 +4 +3 +2
Aij 5328.3 44.624 39.404 76.811
aij 3.1526 1.6513 1.6413 1.7038
C6
ij 52.461 16.716

b6
ij 2.7370 1.7543

αi 10.754 2.4116
bD
ij 0.0 1.6489 1.5573 1.4304 (Ca―O

3.4741 (O―Ca
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obtained from high-level calculations by Chu and Dalgarno (2004). Fol-
lowing Koutselos and Mason (1986), we then assumedNO2− ¼ NNe,
NCa2þ ¼ NAr, NY3þ ¼ NKr, and together with the condensed-phase polar-
izabilities resulting from the dipole-fitting, these yield the required co-
efficients C6ij, by Eq. (7). These coefficients, like the dipole parameters,
are held constant during the subsequent optimization of the remaining
model parameters. Although approximate, the procedure is physically
justified and produces reasonable dispersion coefficients.

2.2. Molecular dynamics

Once the interaction potential was parameterized, we performed
MD simulations for four silicate melts, of major-element composition
Al2SiO5, CaAl2Si2O8, Ca3Al(SiO4)3 and CaSiO3. The cubic simulation
cells, repeated periodically in space, contained 1152, 1664, 1280 and
1079 atoms, respectively, with one Al3+ replaced by Y3+ (three
CaO replaced by Y2O3 in the case of CaSiO3). The atoms were first
placed randomly into the cells, which were then equilibrated for at
least 20 ps at 3000 K and ambient pressure. Temperature and pres-
sure were controlled by a Nosé–Hoover thermostat (Nosé, 1984;
Hoover, 1985) and a barostat (Martyna et al., 1994), respectively.
We then fixed the volume of the simulation cell to the average vol-
ume of the last 10 ps and equilibrated the systems during another
10 ps, now at constant volume and temperature T=3000 K (NVT en-
semble). Data were acquired during subsequent NVT simulations of
100 ps duration, using a time step of 1 fs for the integration of the
Newtonian equations of motion. The structural results obtained
from the MD simulations (coordination numbers, bond lengths) are
well-converged with respect to the run duration, since virtually the
nk here, e.g., short-range repulsion for Si–Si, are taken to be absent in the model. Since

Y―O Ca―Ca Y―Y Ca―Y

+3
95.048
1.6813
23.763 6.4724 12.504 8.9817
1.4995 2.8594 0.67066 1.0865
3.5475

)/ 1.5056 (Y―O)/
) 3.3585 (O―Y)

lations of Y in silicate melts and implications for trace element
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same values result from analysis of the last 50 ps only of each simula-
tion. For the first three compositions, since there was only one Y atom
per cell, the interaction with other Y atoms (periodic images in other
cells) was very weak, given a minimum distance of 23.5 Å. For CaSiO3,
we checked that the two Y atoms in the simulation cell did not form a
complex during the simulation. Hence, we expect Y to behave as a
trace element in all simulations.

2.3. Thermodynamic integration

Trace element partitioning is ultimately driven by the tendency of
any thermodynamic system to minimize its free energy. Whereas the
internal energy U of a system is readily obtained from MD simulations,
free energies cannot be extracteddirectly froma single simulation (note
that also in experiments, free energies cannot be determined from a sin-
gle measurement, in contrast to quantities like temperature or pres-
sure). However, the method of thermodynamic integration can be
used to derive free energy differences from MD (Frenkel and Smit,
2002).We applied this method to calculate the change in Gibbs free en-
ergy associated with an exchange reaction of Y and Al between two
silicate melts:

Y3þ in melt 1þ Al3þ in melt 2
⇌Al3þ in melt 1þ Y3þ in melt 2

ð9Þ

The equilibrium constant K of this reaction is related to the molar
exchange coefficient KD,Y/Al

m2/m1 (see Beattie et al. (1993) for terminolo-
gy):

K ¼ am1
Al a

m2
Y

am1
Y am2

Al

≃ xm1
Al x

m2
Y

xm1
Y xm2

Al

¼ Dm2=m1
Y�

Dm2=m1
Al�

¼ Km2=m1
D;Y=Al ð10Þ

Here, m1 andm2 stand for the twomelts, of different composition.
The exchange coefficient is just the partition coefficient of Y, normal-
ized by the one of Al, and thus quantifies the fractionation of Y and Al
between the melts. We assumed that activities a can be replaced by
mole fractions x in Eq. (10).

For computational purposes, we split the exchange reaction (9)
into two partial reactions, or “transmutations”,

Y3þ in melt 1⇌Al3þ in melt 1
Al3þ in melt 2⇌Y3þ in melt 2 ð11Þ

The reason for this splitting is that we can compute the change in
Gibbs free energy for each of the two partial reactions bymeans of ther-
modynamic integration, following the procedure described by Salanne
et al. (2008) and outlined in the next paragraph. With this method,
the interaction parameters of Y are gradually transformed into those of
Al (or vice versa). Although the two reactions in Eq. (11) do not corre-
spond to real physical processes, the associated free energy differences
are well defined, and taken together, they give the complete (physical)
exchange reaction (9). The total change in Gibbs free energy, ΔG, for the
reaction (9) determines the equilibrium constant K=exp(−ΔG/(RT))
and thus the exchange coefficient through Eq. (10).

In more technical terms, in order to describe the transmutations,
we introduce a hybrid potential energy function, characterizing a sys-
tem in which one Y atom is partially transmuted into Al. It is defined
as a linear mixture of two potential energy functions of the same form
as in Eq. (1):

Vλ rf gð Þ ¼ 1−λð ÞVY rf gð Þ þ λVAl rf gð Þ ð12Þ

Here, VY is the potential energy of the system (melt) containing one
Y3+, and VAl is the potential energy of a system where Y3+ is replaced
by Al3+. The parameter λ takes values between 0 (the atom in question
is pure Y) and 1 (the atom is fully transmuted into Al). Now, following
Please cite this article as: Haigis, V., et al., Molecular dynamics simu
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an idea of Kirkwood (1935), we express the free energy change for
the “reaction” Y3+→Al3+ in a given melt (one of the transmutations
in Eq. (11)) as

ΔG ¼ ∫1

0

∂Vλ

∂λ

� �
λ
dλ ¼ ∫1

0
VAl−VYh iλdλ ð13Þ

where 〈…〉λ denotes the average in a systemgoverned by the hybrid po-
tential energy function Vλ. The crucial point of the method is that the
difference VAl({r})−VY({r}) is a known function of the atomic coordi-
nates, and hence its average can be computed directly from an MD tra-
jectory, unlike ΔG itself. If 〈VAl−VY〉λ is evaluated by means of several
MD simulations for a set of λ values, the free energy of reaction (trans-
mutation) can be obtained by numerical integration according to
Eq. (13).

The simulationswere carried out bymeans of the CP2K code (http://
cp2k.berlios.de/). As melt compositions m1 and m2, we chose Al2SiO5

and CaAl2Si2O8, with supercells containing 22 formula units in the
case of Al2SiO5 and 16 formula units in the case of CaAl2Si2O8. Both sys-
tems were equilibrated at 2500 K and ambient pressure, and data were
acquired at constant volume (corresponding to ambient pressure) and
with a Nosé–Hoover thermostat maintaining the temperature at
2500 K. In each system, Al was gradually transformed into Y in five
steps, and at each intermediate step, we performed a full MD of 12 ps
duration, starting from the final configuration of the previous run. Of
these 12 ps, the first 2 ps served for equilibration after slightly changing
the interaction potential Vλ, and the remaining 10 ps were used for
analysis. After a full transmutation from Al to Y, we also simulated the
reverse transmutation from Y to Al. The sum of free energy changes,
ΔGforward+ΔGbackward, of the forward and the backward transmutation
(which should ideally be zero since it represents a null reaction) was
used to estimate the error due to incomplete sampling of the phase
space.

Since periodic boundary conditions were applied, the question
arises how the finite size of the simulation cell influences the calculat-
ed free energy differences. We expect that the respective error is
below 5%, for the following reason: Ayala and Sprik (2008) carefully
studied the finite-size effect on the free energy change associated
with a redox reaction of a single metal cation in water, using thermo-
dynamic integration as well. They found that free energies were con-
verged to b5% with respect to the limit of very large cells, for cell sizes
comparable to ours. Now, in their study, the transmutation involves a
change of the cationic charge (M2+⇌M3+), whereas in our case, only
the short-range interaction and the less significant polarizability and
van der Waals parameters are changed (Y3+⇌Al3+). Therefore, the
effect of limited cell sizes should be even less important here than
in the redox case, where changes in strong, long-range Coulomb
interactions occur.

3. Results and discussion

3.1. Atomic environment of Y in silicate melts from MD simulations

The four melt compositions, Al2SiO5, CaAl2Si2O8, Ca3Al2(SiO4)3 and
CaSiO3, were selected in such away as to span awide range ofmelt po-
lymerization. As a simple compositional variable, we chose the ratio of
non-bridging oxygens to the total amount of Si and Al, NBO/(Si+Al),
which was obtained from the simulations. For the present study, we
prefer this terminology to themore standardNBO/T (T=tetrahedrally
coordinated network former) because the average coordination of Al
was found to be larger than 4, even in nominally fully polymerized
melts, and thus Al cannot always be classified as T. We still suggest
to view NBO/(Si+Al) as a measure of melt depolymerization, with
Ca acting as a network modifier. Non-bridging oxygen is defined
here as oxygen which is not exclusively bonded to Si or Al, according
to the bonding criterion presented in the following paragraph.
lations of Y in silicate melts and implications for trace element
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Coordination numbers and average bond lengths were obtained
from the simulations in the following way: for a given pair of elements
i– j, we calculated the radial pair distribution function g(rij) by organiz-
ing the various i–j distances occurring during the simulation into bins
and suitably normalizing the resulting distribution (see, e.g., Fig. 1).
We then fixed the cut-off radius rcut for this element pair at the distance
where g(rij) adopts itsfirstminimum, i.e. rcut represents the radial extent
of the first coordination shell. The coordination of element i by element j
is determined by averaging, over all i-atoms and over the duration of the
simulation, the number of j-atoms closer to a given i-atom than rcut. Sim-
ilarly, the average i-j bond length is obtained as the average distance rijof
atom pairs with a distance less than rcut. Note that in general, rcut for a
given element pair varieswithmelt composition,which reflects changes
in the shape of the first coordination shell.

As a first step towards understanding the atomistic mechanisms lead-
ing to trace element partitioning betweenmelts, we investigated how the
local environment of Y changes as a function of melt composition. Fig. 2
shows that the coordination of Y by O drops from 7.7 in Al2SiO5 (which
has NBO/(Si+Al)=0.0) to 6.2 in CaSiO3 (NBO/(Si+Al)=1.9). Concur-
rently, the average distance between Y and its nearest-neighbor oxygen
decreases from 2.56 Å to 2.46 Å, as can be seen from Fig. 3. Coordination
numbers and average Y―O distances are also listed in Table 2. In Fig. 4,
the radial distributionof oxygen atoms aroundY is plotted for the four dif-
ferentmelt compositions.We observe thatwith increasing NBO/(Si+Al),
the distribution becomes narrower, or in other words, oxygen disorder
around Y decreases. The peak position does not exhibit systematic
changes, except for the case of Al2SiO5, where it is shifted to larger Y―O
distances. For the other three compositions, the height of the peak in-
creaseswith increasingNBO/(Si+Al). These data imply that the observed
decrease of coordination number and Y―O bond length with decreasing
polymerization is largely due to the reduction of the tail of thedistribution
at large Y―O distances.

In order to gain further insight into structural differences resulting
from changes in composition, we also investigated the chemical com-
position of the second coordination shell around Y. In Fig. 5, we plot
the average number of cations bonded to one oxygen atom if the lat-
ter is itself bonded to Y. Oxygen-cation bonding statistics were again
based on cut-off radii obtained from the simulations. As expected
from the bulk melt composition, the amount of Ca in the second
shell increases at the expense of Si and Al, when going to the more
depolymerized, i.e. more Ca-rich compositions. The essential result,
however, is that for all Ca-bearing melts, the ratio Ca/(Si+Al) in the
second coordination shell is larger than the bulk ratio, i.e. Y tends to
be associated with the network modifier Ca rather than with Si or Al.

In the light of these structural findings, we put forward a qualita-
tive explanation of the observed partitioning of Y in terms of its bond-
ing requirement. Whereas Si and Al form very strong bonds with
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from simulation. Lines are a guide to the eye.
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oxygen, the Ca―O bonds have a looser character, since Ca is less
charged and has a greater ionic radius than Si and Al. When trying
to satisfy its bonding requirements, Y competes for oxygen bonds
with other cations. In a polymerized melt, many strong competitors
(Si and Al) are present, and Y has to take what is left, forming many
weak (elongated) bonds. On the other hand, in the presence of
weak competitors like Ca, Y can shape its bonding environment
according to its needs and forms less, but stronger (shorter) bonds.
The enhanced ability of Y to shape its environment is reflected by
the reduced oxygen disorder around Y, which is indicated by the
narrower Y―O distribution shown in Fig. 4, as discussed above. This
picture explains the trends in coordination number and average
Y―O distance seen in the simulations. The fact that Y prefers to be
associated with Ca instead of Si and Al in the second coordination
shell indicates that it is energetically more favorable for Y to be
surrounded by weak competitors. This should lead to the observed
partitioning into the more depolymerized melts. In Section 3.3, we
will take a more quantitative approach to the energetics of trace
element partitioning.

3.2. Comparison to EXAFS experiments

To corroborate our structural findings obtained from MD simula-
tions, we compared them to results from extended x-ray absorption
fine structure (EXAFS) spectroscopy at the Y K-edge on four glasses
Structural parameters for Y in silicate melts (glasses): coordination number CN, cut-off
radius rcut for CN in Å and average Y―O distance d in Å, with standard deviations in pa-
rentheses. Simulations performed at 3000 K, EXAFS spectra taken on glasses at 300 K.
*CN fixed at simulation values, see text for explanation.

Simulation Experiment

Al2SiO5

CN 7.7 –

rcut 3.24
d 2.56 –

CaAl2Si2O8

CN 6.9 6.9*
rcut 3.24
d 2.52 2.34 (0.01)

Ca3Al2(SiO4)3
CN 6.6 6.6*
rcut 3.25
d 2.49 2.31 (0.01)

CaSiO3

CN 6.2 6.2*
rcut 3.22
d 2.46 2.28 (0.01)

lations of Y in silicate melts and implications for trace element
012.08.021

http://dx.doi.org/10.1016/j.chemgeo.2012.08.021


Fig. 4. Distribution of O around Y in four silicate melts as obtained fromMD simulation.
The area under a curve up to a certain distance rY−O gives the number NO of oxygen
atoms within a sphere of radius rY−O around Y. Lines are a guide to the eye.
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of the same major-element composition as the four simulated silicate
melts, doped with 5000 ppm of Y. EXAFS probes the local environ-
ment around a selected element and hence provides information
about the first coordination shell of O around Y, in particular about
the average Y―O distance. Since the spectra taken on Al2SiO5 glass
could not be interpreted satisfactorily, this composition was excluded
from further analysis. The details of synthesis, sample preparation,
data acquisition and analysis are described by Simon et al.

A difficulty arises from the fact that the experiments were
performed on glasses at room temperature whereas the simulations
describe melts at 3000 K. Apart from one case (see below), we did not
perform extensive simulations of glasses at room temperature (which
could be compared directly to the EXAFS data) because MD averages
are physically meaningful only to the extent that the simulated system
samples all of the energetically relevant phase space. For a single Y atom
in glassy silicates, this criterion is not fulfilled at low temperatures and
with tractable simulation box sizes and simulation lengths. On the other
hand, in situ EXAFS measurements on melts are experimentally very
challenging (Pauvert et al., 2010). We anticipate that absolute
interatomic distances will be larger in the high-temperature melt than
in the glass, due to thermal expansion, but expect changes between
different compositions to be similar for melts and glasses.
Fig. 5. Chemical composition of the second (cationic) coordination shell around Y as a
function of melt composition: number of cations per first-shell O. Lines are a guide to
the eye.
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The Y―O distance resulting from the analysis of the EXAFS data
are compared to the results from the simulations in Table 2. For the
analysis of the EXAFS data, the coordination of Y was taken to be
the one found in the MD simulations (see Simon et al. in this issue
for a discussion). As expected, we find Y―O bonds systematically
elongated by about 8% in the high-temperature simulation with
respect to the data extracted from EXAFS. But remarkably, the Y―O
bond length decreases consistently by 0.06 Å in both simulation and
experiment, when going from the more polymerized CaAl2Si2O8 to
the more depolymerized CaSiO3. For the distribution of O around Y,
the experimental data reveal the same trend as the MD simulations:
with increasing NBO/(Si+Al), the peak becomes narrower and
higher, reflecting increasing oxygen order around Y (Fig. 6). As
expected, these distributions, measured on glasses, are significantly
narrower and more pronounced than the ones obtained from the
simulation of high-temperature melts (Fig. 4). Note, however, that
they sum up to the same coordination numbers. The agreement in
change of Y―O bond length between simulation and experiment as
well as the congruent changes in the shape of the distribution suggest
that our interactionmodel for MD correctly captures the link between
melt composition and local environment around Y.

In order to confirm that the observed differences between simula-
tion and experiment are largely due to differences between melts and
glasses, and not to deficiencies of our interaction potential, we also
simulated Ca3Al2(SiO4)3 glass, containing a single Y atom, at 300 K.
We circumvented the problem of insufficient sampling of the phase
space by running a simulation at 3000 K, picking 100 configurations
from this simulation and quenching them separately to 300 K. With
this procedure, different Y environments (sampled in the high-
temperature run) are “frozen” into the glass structures, and the aver-
age over the 100 resulting glass structures should yield a representa-
tive description of Y in Ca3Al2(SiO4)3 glass. Note however, that due
to the limited simulation time, the quench rate in the simulation was
−2.5×1011 K/s, much larger than in the experiments. This means
that the simulated glass formed at a higher fictive temperature and
therefore probably still has a slightly different structure than the
glass analyzed by EXAFS spectroscopy.We found an average Y―O dis-
tance of 2.38 Å in the simulated glass, to be compared with 2.31 Å
obtained from experiment (and 2.49 Å in the simulated melt at
3000 K). The coordination number of Ywas found to be 6.1 (compared
to 6.6 in the melt). The satisfying agreement with experiment further
Fig. 6.Distribution of O around Y in three silicatemelts as obtained fromEXAFS spectroscopy
(for details see Simon et al. in this issue). The area under a curve up to a certain distance rY−O

gives the number NO of oxygen atoms within a sphere of radius rY−O around Y. Note the
change of scale of the ordinate axis with respect to Fig. 4. Lines are a guide to the eye.
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Fig. 7. Thermodynamic integration for the exchange reaction of Y and Al between
Al2SiO5 and CaAl2Si2O8 melt (Eq. (13)). The data points represent the average potential
energy difference 〈VAl−VY〉λ for the two compositions as a function of the transmuta-
tion parameter λ. The curves are 4th order polynomial interpolations to the data. Either
of the curves represents one of the transmutations or partial reactions in Eq. (11). The
area between the two curves corresponds to the total change in Gibbs free energy, ΔG,
for the complete exchange reaction.
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corroborates the adequacy of our interaction potential in predicting
glass and melt structures.

3.3. Y partitioning between silicate melts

In Section 3.1, we suggested a qualitative explanation for the pref-
erence of Y for less polymerized melts in terms of competition for
bonding. Now we turn to a more quantitative description of element
partitioning and consider the free energy balance which accompanies
the process. For trace element incorporation in crystals, the lattice
strain model (Blundy and Wood, 1994) provides a link between the
structural changes induced by the incorporation (strain) and the
associated energy costs, and these determine the influence of the
crystal on partitioning. However, in melts, there is no such obvious
link, due to the lack of well-defined lattice sites. We therefore chose
a more general approach and applied the method of thermodynamic
integration, by which we calculated the change in Gibbs free energy
upon replacing a major element cation in the melt (Al) by a trace
element (Y), and like in crystals, this change in Gibbs free energy gov-
erns partitioning. More precisely, we modeled the exchange reaction
of Y3+ and Al3+ between Al2SiO5 melt and CaAl2Si2O8 melt, as de-
scribed in Section 2.3:

Y3þ in Al2SiO5 þ Al3þ in CaAl2Si2O8

⇌Al3þ in Al2SiO5 þ Y3þ in CaAl2Si2O8
ð14Þ

By choosing this melt pair, we by no means want to suggest that
these melts coexist as immiscible phases in nature or experiment.
Rather they serve as a simplified model system on which the mecha-
nism and the energetics of trace element distribution can be studied.
Moreover, even hypothetical partitioning between two melts pro-
vides information about partitioning between mineral and melt: if
one is interested in the relative change of trace element distribution
between a mineral (with constant chemistry) and melts of varying
compositions (see, e.g., Prowatke and Klemme (2005)), the problem
can be reduced to partitioning between the different melts, because
the contribution of the mineral cancels out. The equilibrium constant
of reaction (14) is well-defined thermodynamically and reflects the frac-
tionation tendency of Y and Al between the two melts. We suggest to
view Al2SiO5 as highly polymerized in the sense that the ratio NBO/
(Si+Al) is 0, whereas for CaAl2Si2O8, we found NBO/(Si+Al)=0.14 in
the simulation and thus consider it less polymerized (although nominally
fully polymerized). The presence of a significant amount ofNBO in glasses
of this composition has also been comfirmed by NMR experiments
(Stebbins and Xu, 1997).

The thermodynamic integration was carried out numerically, in-
terpolating the five data points, corresponding to five values of λ,
for each system with a 4th order polynomial (Fig. 7). The change in
free energy for the transmutation Y3+→Al3+ is given by the integral
in Eq. (13), i.e. the area between a curve and the x axis, and is found to
be negative in both Al2SiO5 and CaAl2Si2O8 (areas below the x axis are
counted as negative). This indicates that incorporation of Y is energet-
ically less favorable in both cases than incorporation of Al. However,
in Al2SiO5, it is unfavorable to a higher degree, and thus the overall
minimization of the Gibbs free energy dictates partitioning of Y into
CaAl2Si2O8.

Quantitatively, we obtained a total ΔG=(−66±2) kJ/mol for the
reaction (14). The negative sign indicates that the equilibrium is
shifted to the right side, with Al enriched in the highly polymerized
Al2SiO5 melt and Y incorporated preferentially into the less polymer-
ized, Ca-bearing CaAl2Si2O8. For T=2500 K, the resulting equilibrium
constant is K=24±2. According to Eq. (10), it approximates the ratio
of molar partition coefficients DY∗

m2/m1/DAl∗
m2/m1 with m1 and m2

representing Al2SiO5 and CaAl2Si2O8, respectively. If one assumes
that ΔG does not vary a lot with temperature, the equilibrium
Please cite this article as: Haigis, V., et al., Molecular dynamics simu
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constant will be K=(200±30) at 1500 K, a temperature in the
range usually covered in experiments.

Since the equilibrium constant of the exchange reaction (14) is
related to a ratio of partition coefficients, we are cautious with mak-
ing statements about DY∗

m2/m1 itself. However, Veksler et al. (2006)
found that the partition coefficients of Al between two immiscible sil-
icate melts are not too far from 1 (and much closer to unity than the
partition coefficients of REE). If we assume that this also holds for our
system, then our result indicates DY∗

m2/m1>1. This finding is in agree-
ment with the observed preference of Y (and other REE) for more
depolymerized melts. It is also in line with our interpretation of the
structural data in Section 3.1, where we argued that the presence of
Ca (a “weak competitor”) facilitates the incorporation of Y into the
melt.

4. Conclusions

We combined MD simulations and EXAFS spectroscopy to investi-
gate the structural environment of Y as a trace element in silicate
melts of varying composition. For the MD, a new interaction potential
including polarization was constructed for the system Y―Ca―
Al―Si―O, which proved to be accurate, transferable and computa-
tionally efficient. The simulations revealed two structural trends:
First, the average coordination number of Y decreases when the
melt polymerization decreases (i.e. when the Ca content increases).
This change is accompanied by a decrease of the average Y―O dis-
tance by about 4%, and at the same time, oxygen disorder around Y
is reduced. A very similar variation is also seen in EXAFS experiments
on glasses, which corroborates the reliability of the simulation results.

Second, the MD simulations for the three Ca-bearing melts indi-
cate that the second (cationic) coordination shell around Y exhibits
a larger Ca/(Si+Al) ratio than the bulk composition. In other words,
Y tends to form clusters with the network modifier Ca, which implies
that for a given melt, it is energetically more favorable for Y to share
oxygen with Ca than with the network formers Si and Al. This, in turn,
suggests that, given two melts of different composition, Y should par-
tition preferentially into the one with larger Ca/(Si+Al) ratio, i.e. into
the less polymerized melt. Indeed, modeling the exchange reaction of
Y and Al between a Ca-free and a Ca-bearing melt by means of ther-
modynamic integration, we confirmed that minimization of Gibbs
free energy drives Y into the Ca-bearing melt.
lations of Y in silicate melts and implications for trace element
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In summary, using simple systems,wepresented computational and
experimental evidence on how the influence of melt composition on
trace element partitioning can be rationalized in terms of atomic-scale
processes. We found a systematic influence of melt composition on
the microscopic melt structure around Y and investigated the energetic
implications of structural changes. The exemplary result that Y incorpo-
ration into melts is facilitated by the presence of network modifiers is
consistent with the general observation that REE prefer depolymerized
melts to polymerized ones. Although most systems which are studied
experimentally, and Nature itself, are more complex than the melts in-
vestigated in this study, we still hold that the underlying mechanisms
are the same in both cases.
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